如图,$RtvartriangleABC$中$angleC=90^circ$,以斜边$AB$为边向外作正方形$ABDE$,且正方形对角线交于点$O$,连接$OC$,已知$AC=5$,$OC=6sqrt{2}$,则另一直角边$BC$的长为__________.
解法一:如图1所示,过$O$作$OFbotBC$,过$A$作$AMbotOF$,
$because$四边形$ABDE$为正方形,
$therefore$$angleAOB=90^circ$,$OA=OB$,
$therefore$$angleAOM+angleBOF=90^{circ}$,
又$angleAMO=90^{circ}$,$therefore$$angleAOF+angleOAM=90^{circ}$,
$therefore$$angleBOF=angleOAM$,
在$vartriangleAOM$和$vartriangleBOF$中,
$left{begin{array}{}{l}{angleAMC=angleOFB=90^circ}\{angleOAM=angleBOF}\{OA=OB}\end{array}right.$,
$therefore$$vartriangleAOMcongvartriangleBOF(AAS)$,
$therefore$$begin{array}{}{l}{AM=OF}\end{array}$,$OM=FB$,
又$angleACB=angleAMF=angleCFM=90^{circ}$,
$therefore$四边形$ACFM$为矩形,
∴$AM=CF$,$AC=MF=5$,
$therefore$$OF=CF$,
$therefore$$vartriangleOCF$为等腰直角三角形,
∵$OC=6sqrt{2}$,
$therefore$根据勾股定理得:$CF^{2}+OF^{2}=OC^{2}$,
解得:$CF=OF=6$,
$therefore$$FB=OM=OF-FM=6-5=1$,
则$BC=BF+CF=6+1=7$.
解法二:如图2所示,过点$O$作$OMbotCA$,交$CA$的延长线于点$M$;过点$O$作$ONbotBC$于点$N$.
易证$DeltaOMAcongDeltaONB(AAS)$,$thereforeOM=ON,MA=NB$,
$thereforeO$点在$angleACB$的平分线上,$thereforeOCM$为等腰直角三角形,
又$OC=6sqrt{2}$,$thereforeCM=6,thereforeMA=CM-AC=6-5=1$,
$thereforeBC=CN+NB=6+1=7$