这篇小升初数学中途休息问题例题解析是查字典小考网特地为大家整理的,希望对大家有所帮助!
小升初数学中经常会碰到中途休息类型的题目,那么同学们该如何快速解答这种题目呢?下面跟着例题一块了解解题思路:
快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?
解:画一张示意图:
设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.
有了上面"取单位"准备后,下面很易计算了.
慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).
现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是
14÷(2+3)=2.8(小时).
慢车从C到A返回行驶至与快车相遇共用了
7.5+0.5+2.8=10.8(小时).
答:从第一相遇到再相遇共需10小时48分.
以上就是由查字典小考网为您提供的小升初数学中途休息问题例题解析,希望给您带来帮助!