宁波小升初数论知识点:余数问题练习及答案(六)_小升初-查字典小升初
 
请输入您要查询的关键词

宁波小升初数论知识点:余数问题练习及答案(六)

2012-12-12 17:46:02     标签:小升初数学题

在2013年宁波小升初数学过程中,数论知识点也是复习的重点。查字典宁波奥数网小编将数论问题中几个重要的知识点的习题讲解整理出来希望对大家有所帮助。

1.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.

分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.

101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.

2.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.

分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.

3.除以99,余数是______.

分析:所求余数与19×100,即与1900除以99所得的余数相同,因此所求余数是19.

4.求下列各式的余数:

(1)2461×135×6047÷11

(2)19992000÷7

分析:(1)5;(2)1999÷7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由2000÷3 余2 可以得到42000除以7 的余数是2,故19992000÷7的余数是2 .

5.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.

分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.

6.除以99的余数是______.

分析:所求余数与19×100,即与1900除以99所得的余数相同,因此所求余数是19.

7.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果

分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .

8.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.

分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.

101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
猜你喜欢