在2013年宁波小升初数学过程中,行程问题不仅是小升初数学考试的重点,同时也是考试的难点。查字典宁波奥数网小编将行程问题中几个常见的考察题型及解析整理出来希望对大家有所帮助。
图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求
解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个"相遇",解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.
设汽车行驶CD所需时间是1.
根据"走同样距离,时间与速度成反比",可得出
分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.
从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.
PC上所需时间-PD上所需时间
=DA所需时间-CB所需时间
=18-12
=6.
而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据"和差"计算得
PC上所需时间是(24+6)÷2=15,
PD上所需时间是24-15=9.
现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有
BN上所需时间-AN上所需时间
=P→D→A所需时间-CB所需时间
=(9+18)-12
= 15.
BN上所需时间+AN上所需时间=AB上所需时间
=16.
立即可求BN上所需时间是15.5,AN所需时间是0.5.
从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些。