2012重庆小升初奥数常用公式大全_小升初-查字典小升初
 
请输入您要查询的关键词

2012重庆小升初奥数常用公式大全

2012-03-22 09:48:44     标签:小升初学习资料

重庆重点中学对小升初的奥数成绩特别重视,因此重庆的小升初学生大多努力学习奥数知识,现在到了重庆小升初的冲刺阶段了,这里重庆奥数网小编为大家整理了小学奥数常用公式大全,整理如下,希望对重庆小升初的同学们有帮助。

时钟问题—快慢表问题

基本思路:

1、按照行程问题中的思维方法解题;

2、不同的表当成速度不同的运动物体;

3、路程的单位是分格(表一周为60分格);

4、时间是标准表所经过的时间;

5、合理利用行程问题中的比例关系;

时钟问题—钟面追及

基本思路:封闭曲线上的追及问题。

关键问题:①确定分针与时针的初始位置;

②确定分针与时针的路程差;

基本方法:

①分格方法:

时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。

②度数方法:

从角度观点看,钟面圆周一周是360°,分针每分钟转度,即6°,时针每分钟转度,即度。

③时针夹角公式:时×30°—分×5.5或分×5.5—时×30°

④时针和分针相重合需要的时间(分钟数)=原来两针间隔格数÷

时针与分针成直线所需要的时间(分针数)=(原来两针间隔数±30)÷

时针与分针成直角所需时间(分钟数)=(原来两针间隔格数±15或45)÷

浓度与配比

经验总结:在配比的过程中存在这样的一个反比例关系,进行混合的两种溶液的重量和他们浓度的变化成反比。

溶质:溶解在其它物质里的物质(例如糖、盐、酒精等)叫溶质。

溶剂:溶解其它物质的物质(例如水、汽油等)叫溶剂。

溶液:溶质和溶剂混合成的液体(例如盐水、糖水等)叫溶液。

基本公式:溶液重量=溶质重量+溶剂重量;

溶质重量=溶液重量×浓度;

浓度=×100%=×100%

理论部分小练习:试推出溶质、溶液、溶剂三者的其它公式。

经验总结:在配比的过程中存在这样的一个反比例关系,进行混合的两种溶液的重量和他们浓度的变化成反比。

经济问题

利润的百分数=(卖价-成本)÷成本×100%;

卖价=成本×(1+利润的百分数);

成本=卖价÷(1+利润的百分数);

商品的定价按照期望的利润来确定;

定价=成本×(1+期望利润的百分数);

本金:储蓄的金额;

利率:利息和本金的比;

利息=本金×利率×期数;

含税价格=不含税价格×(1+增值税税率);

简单方程

代数式:用运算符号(加减乘除)连接起来的字母或者数字。

方程:含有未知数的等式叫方程。

列方程:把两个或几个相等的代数式用等号连起来。

列方程关键问题:用两个以上的不同代数式表示同一个数。

等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变。

移项:把数或式子改变符号后从方程等号的一边移到另一边;

移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。

加去括号规则:在只有加减运算的算式里,如果括号前面是“+”号,则添、去括号,括号里面的运算符号都不变;如果括号前面是“-”号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有“+”或“-”的,都按有“+”处理。

移项关键问题:运用等式的性质,移项规则,加、去括号规则。

乘法分配率:

解方程步骤:①去分母;②去括号;③移项;④合并同类项;⑤求解;

方程组:几个二元一次方程组成的一组方程。

解方程组的步骤:①消元;②按一元一次方程步骤。

消元的方法:①加减消元;②代入消元。

不定方程

一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;

常规方法:观察法、试验法、枚举法;

多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;

多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;

涉及知识点:列方程、数的整除、大小比较;

解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;

技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;

循环小数

一、把循环小数的小数部分化成分数的规则

①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。

②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。

二、分数转化成循环小数的判断方法:

①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。

②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。

综合解决应用题的具体方法:

① 图解法:即利用图形表示应用题的已知量和所求量。

② 线段法:以线段的长短表示数量的大小,以线段间的关系反映数量间的图形方法。

③ 演示法:可以利用身边的物品代替题目中的条件,用直观演示的办法解决问题。

④ 消元法:当一个应用题中出现多个未知数时,设法消去一个或几个未知数,这样就求出未知数。(具体有加减消元法、代入消元法、比较消元法)

⑤ 假设法:改变题目中的某些条件使本来复杂的关系简单化,或使用“假设”将某些未知设为已知,以增加已知因素,获得问题的解决。

⑥ 逆推法:可以从条件或问题反过来想而寻求解题途径。逆推法一般用于还原应用题。

⑦ 转换法:将一个新问题通过一定的途径转化为另一个自己比较熟悉的,简单的生活问题,有小数换整数、分数换整数。整体转换。

⑧ 列表法:把应用题的已知数和未知数按照一定的顺序排列成表格的形式,通过观察比较,找到解题途径。

⑨ 比较法:用对应的观点,发现应用题数量之间的对应关系,通过对应数量关系求未知量的解题方法。

鸡兔同笼问题

基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

牛吃草问题

基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;

关键问题:确定两个不变的量。

基本公式:

生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);

总草量=较长时间×长时间牛头数-较长时间×生长量;

周期循环与数表规律

周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰 年:一年有366天;

①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;

平 年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

平均数

基本公式:①平均数=总数量÷总份数

总数量=平均数×总份数

总份数=总数量÷平均数

②平均数=基准数+每一个数与基准数差的和÷总份数

基本算法:

①求出总数量以及总份数,利用基本公式①进行计算

②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②

抽屉原理

抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:

①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④

观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有

①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;

关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

定义新运算

基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

数列求和

等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表示。

基本思路:等差数列中涉及五个量:a1 ,an, d, n, sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an = a1+(n-1)d;

通项=首项+(项数一1) ×公差;

数列和公式:sn,= (a1+ an)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (an+ a1)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d =(an-a1))÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:确定已知量和未知量,确定使用的公式;

二进制及其应用

十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1××100

注意:N0=1;N1=N(其中N是任意自然数)

二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×

+……+A3×22+A2×21+A1×

注意:An不是0就是1。

十进制化成二进制:

①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

加法乘法原理和几何计数

加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2…… +mn种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2…… ×mn种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数一1);

②数角规律=1+2+3+…+(射线数一1);

③数长方形规律:个数=长的线段数×宽的线段数:

④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数

质数与合数

质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。

求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×

互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

最后,预祝2012重庆小升初的同学都能取得优异的成绩,顺利进入自己理想的中学。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
猜你喜欢