1、 如果a×b=c(a、b、c都是非0的自然数)那么a和b就是c的因数,c就是a和b的倍数。因数和倍数两个不同的概念是相互依存的,不能单独存在。例如4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
2、 因数的特点:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。(1是所有非0自然数的因数)
3、 倍数的特点:一个数的倍数的个数是无限的,其中最小的倍数是它本身。例:3的倍数有:3、6、9、12…其中最小的倍数是3 ,没有最大的倍数。
4、 2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数(2的倍数的数叫做偶数、不是2的倍数的数叫做奇数)。
5的倍数的特征:个位上是0或5的数,都是5的倍数。
3的倍数的特征:一个数的各位上的数的和是3的倍数,这个数就是3的倍数。
13倍数:26、39、52、65、91…17倍数:34、51…11倍数:22、33、44、55、66、77、88、99…
5、 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(也叫素数)。 如2,3,5,7都是质数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,如4、6、8、9、12都是合数。 1既不是质数也不是合数。 最小质数是2。 最小合数是4。
6、 奇数+奇数=偶数 偶数+偶数=偶数 奇数+偶数=奇数
7、 最大公因数:几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数。
8、 求几个数的最大公因数的方法:(1)列举法;(2)先找出两个数中较小数的因数,从中找出另一个数的因数;(3)短除法。
9、 互质数:公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:(1)1和任何大于1的自然数互质。(2)相邻的两个自然数互质。(3)两个不同的质数互质。(4)一质一合(不成倍数关系)的两个数互质。(5)相邻两个奇数互质。 (6)2和任何奇数都是互质数。如果几个数中任意两个都互质,就说这几个数两两互质。
10、 公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个数,叫做最小公倍数。
11、 求两个数最小公倍数的方法:(1)列举法;(2)先找出较大数的倍数,圈出较小数的倍数,找出最小的一个;(3)分解质因数法;(4)短除法。
12、 如果两个数是互质数,它们的最大公因数就是1,最小公倍数是两者的积;如果两个数是倍数关系,它们的最大公因数是较小的数,最小公倍数是较大的数。例:25和5 ,25和5的最小公倍数是25,最大公因数是5。
13、 几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
了解查字典必读
查字典办学理念
查字典师资介绍
查字典办学成绩
报名常遇到的问题
查字典的退费制度