小学奥数必备的30个知识模块之四_小升初-查字典小升初
 
请输入您要查询的关键词

小学奥数必备的30个知识模块之四

2011-07-20 10:46:55     标签:小升初练习题

小学奥数必备的30个知识模块之一

小学奥数必备的30个知识模块之二

小学奥数必备的30个知识模块之三

16.约数与倍数

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:

1、 几个数都除以它们的最大公约数,所得的几个商是互质数。

2、 几个数的最大公约数都是这几个数的约数。

3、 几个数的公约数,都是这几个数的最大公约数的约数。

4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;

那么12和18的公约数有:1、2、3、6;

那么12和18最大的公约数是:6,记作(12,18)=6;

求最大公约数基本方法:

1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;

18的倍数有:18、36、54、72……;

那么12和18的公倍数有:36、72、108……;

那么12和18最小的公倍数是36,记作[12,18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法

17.数的整除

一、基本概念和符号:

1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;

二、整除判断方法:

1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:

①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:

1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

18.余数及其应用

基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余数,q叫做a除以b的不完全商。

余数的性质:

①余数小于除数。

②若a、b除以c的余数相同,则c|a-b或c|b-a。

③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。

④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。

19.余数、同余与周期

一、同余的定义:

①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。

二、同余的性质:

①自身性:a≡a(mod m);

②对称性:若a≡b(mod m),则b≡a(mod m);

③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);

④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);

⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);

⑥乘方性:若a≡b(mod m),则an≡bn(mod m);

⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);

三、关于乘方的预备知识:

①若A=a×b,则MA=Ma×b=(Ma)b

②若B=c+d则MB=Mc+d=Mc×Md

四、被3、9、11除后的余数特征:

①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);

②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);

五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。

20.分数与百分数的应用

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
猜你喜欢