余数问题及剩余定理简要释疑_小升初-查字典小升初
 
请输入您要查询的关键词

余数问题及剩余定理简要释疑

2010-08-25 10:57:40     标签:小升初政策

剩余定理用来解一些不能直接套用公式的余数问题还是很好用的,坛子里不时会有人问起,相信都是对原理不甚了解所致。

下面我想结合一道具体的实例谈谈自己的一点浅见,希望能够对有需要的人起到一点帮助。

例1:一个数除以9余5,除以7余1,除以5余2,问最小的这个数是多少?(自然数)

假设这个数x=35a+45b+63c(35为5,7公倍数;45为5,9公倍数;63为7,9公倍数)

条件1:除以9余5,45b和63c都可被9整除,因此35a除以9余5,可知35a=140时满足(a=4这个值需要尝试,属于计算问题)

条件2:除以7余1,35a和63c都可被7整除,因此45b除以7余1,可知45b=225时满足

条件3:除以5余2,35a和45b都可被5整除,因此63c除以5余2,可知63c=252时满足

因此当x=140+225+252+315n时,条件1,2,3都满足

X=315n+617

n=-1时,x取最小值302

----------------------------------------------

以上套路看似繁琐,其实原理知道了,还是挺便捷的

一般问题(3个条件)的剩余定理解法应该是

1:构造3个数a,b,c

x=a+b+c(a是2,3除数的公倍数,满足条件1)(b是1,3除数的公倍数,满足条件2)(c是1,2除数的公倍数,满足条件3)

a-----------条件1

b-----------条件2

c-----------条件3

2:这个数可以写作x=T*n+a+b+c(T为3个除数的公倍数)

3:根据题目所问,或者求最小的数,或者求满足条件的数有几个

======================================================

特殊的余数问题还有个小口诀

1:和同加和

2:余同加余

3:差同减差(公倍数作周期)

例2:一个数除以5余2除以4余3,除以9余7,满足条件的三位数有几个?

5+2=4+3此为和同,因此x=20a+7(20为公倍数,+7为加和)

x=20a+7=9b+7,此为余同,因此x=180n+7(180为公倍数,+7为加余)

n取[1,5]共5个

-----------------------------------------

例3:一个数除以5余1,除以6余2,满足条件的三位数有几个?

x=5a+1=6b+2

5-1=6-2=4,此为差同,因此x=30n-4

n取[4,33]共30个

--------------------------------

有些余数问题可以套用公式的比较简单,不能套用公式的计算是避免不了的,因此只有平时多加练习考试才能遇而不乱~~

点击显示
上一篇:“中国剩余定理”简介、算理及其应用
下一篇:西安84所中职有学历教育招生资格
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •