小学数学最难的典型题:牛吃草问题_小升初-查字典小升初
 
请输入您要查询的关键词

小学数学最难的典型题:牛吃草问题

2020-08-19 16:55:32     标签:小升初学习资料

【口诀】:

每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?

M头N天的吃草量又是几?

大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。

原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知。

例:

整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完?

每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;

大的减去小的,207-162=45;

二者对应的天数的差值,是9-6=3(天)结果就是草的生长速率。

所以草的生长速率是45/3=15(牛/天);

原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

所以原有的草量=27X6-6X15=72(牛/天)。

将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;

剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)

点击显示
上一篇:小学数学最难的典型题:年龄问题
下一篇:小学数学最难的典型题:盈亏问题
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •