在2013年宁波小升初数学过程中,数论知识点也是复习的重点。查字典宁波奥数网小编将数论问题中几个重要的知识点的习题讲解整理出来希望对大家有所帮助。
例题: 2000个学生排成一行,依次从左到右编上1~2000号,然后从左到右按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,…… 按这个规律如此下去,直至当队伍只剩下一人为止。问:这时一共报了多少次?最后留下的这个人原来的号码是多少?
分析与解答:
难的不会想简单的,数大的不会想数小的。我们先从这2000名同学中选出20人代替2000人进行分析,试着找出规律,然后再用这个规律来解题。
这20人第一次报数后共留下10人,因为20÷2=10 ,这10人开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。
第二次报数后共留下5人,因为10÷2=5 ,这5人开始时的编号依次是: 4、8、12、16、20,都是4的倍数,也就是2×2的倍数。
第三次报数后共留下2人,因为5÷2=2 ……1 ,这2人开始时的编号依次是: 8、16,都是8的倍数,也就是2×2×2的倍数。
第四次报数后共留下1人,因为2÷2=1 ,这1人开始时的编号是:16,都是8的倍数,也就是2×2×2×2的倍数。
由此可以发现,第n次报数后,留下的人的编号就是n个2的连乘积,这是一个规律。
2000名同学,报几次数后才能只留下一个同学呢?
第一次:2000÷2=1000 第二次:1000÷2=500
第三次:500÷2=250 第四次:250÷2=125
第五次:125÷2=62 ……1 第六次:62÷2=31
第七次:31÷2=15 ……1 第八次:15÷2=7 ……1
第九次:7÷2=3 ……1 第十次:3÷2=1 ……1
所以共需报10次数。
那么,最后留下的同学在一开始时的编号应是:
2×2×2×…×2=1024(号)