为了让大家能更好掌握小学应用题的解题方法,查字典宁波奥数网小编把小学应用题进行分类,把各类型的相对应的题目及讲解整理出来,大家可以学习下!
解题关健:鸡兔问题是我国古代著名数学问题之一,也叫“鸡兔同笼”问题。解答鸡兔同笼问题,一般采用假设法,假设全部是鸡,算出脚数,与题中给出的脚数相比较,看差多少,每差一个(4-2)只脚,就说明有1只兔,将所差的脚数除以( 4-2 ),就可求出兔的只数。同理,假设全部是兔,可求出鸡。
例题讲解
1、鸡兔同笼共80头,208只脚,鸡和兔各有几只?
分析:
假设这80头全是鸡,那么,脚应是2×80=160 (只),比实际少208-160=48 (只)脚,这是因为1只兔有4只脚,把它看成是2只脚的鸡了,每只兔少算了2只脚,共少算了48只脚,48里面有几个2,就是几只兔。
解: ( 208-2×80 )÷(4-2 )
=48÷2
=24 (只) ------ 兔
80-24=56 (只)
答:鸡有56只,兔有24只。
也可以假设80只全是兔,解答如下:
解: ( 4×80-208 )÷( 4-2 )
=112÷2
=56 (只) ------ 鸡
80-56=24 ( 只)
2、小明参加一次数学竞赛,试题共有10道,每做对一题得10分,错一题扣5分,小明共得了70分,他做对了几道题?
分析:
假设他做对了10道题,那么应得10×10=100 (分),而实际只得70分,少30分,这是因为每做错一题,不但得不到10分,反而倒扣5分,这样做错一题就会少10+5=15 (分),看30分里面有几个15分,就错了几题。
解: ( 10×10-70 )÷( 10+5 )
=30÷15
=2 (道) ------ 错题
10-2=8 (道)
答:他做对了8道题。
更多相关信息<<[试卷真题]
3、有面值5元和10元的钞票共100张,总值为800元。5元和10元的钞票各是多少张?
分析:
假设100张钞票全是5元的,那么总值就是5×100=500 (元),与实际相差800-500=300 元
差的300元,是因为将10元1张的算作了5元的,每张少计算10-5=5 (元),差的300元里面有多少个5元,就是多少张10元的钞票。
解: ( 800-5×10 )÷(10-5 )
=300÷5
=60 (张) ------ 10元面值
100-60=40 (张)
答:有10元的钞票60张,5元的钞票40张。
4、有蜘蛛、蜻蜓和蝉三种动物共21只,共140条腿和23对翅膀,三种动物各多少只?( 蜘蛛8条腿,蜻蜓6条腿2对翅膀,蝉6条腿1对翅膀 )
分析:
假设蜘蛛、蜻蜓、蝉都是6条腿,那么总腿数是6×21=126(条),比实际少140-126=14( 条),这是因为一只蜘蛛是8条腿,把它算作6条腿,每只蜘蛛少计算了8-6=2 (条),少算的14条里面有几个2条,就是几只蜘蛛,即14÷2=7(只)。从总只数里减7只蜘蛛,就得21-7=14 (只)是蜻蜓和蝉的和。再假设这14只全是蜻蜓,那么翅膀应是2×14=28 (对)比实际多28-23=5(对),这是因为蝉是1对翅膀,把它算成2对了,每只蝉多算了1对翅膀多出的这5对翅膀里面有几个1对,就是几只蝉。求出了蝉,蜻蜓可求。
解: ( 140-6×21 )÷( 8-6)
=14÷2
=7 (只) ------ 蜘蛛
21-7=14 (只)
( 2×14-23)÷( 2-1 )
=5÷1
=5(只) ------- 蝉
14-5=9(只) ------ 蜻蜓
答:蜘蛛7只,蜻蜓9只,蝉5只。