苏教版小学一至四年级数学公式大全_小升初-查字典小升初
 
请输入您要查询的关键词

苏教版小学一至四年级数学公式大全

2011-05-13 14:16:10     标签:小升初学习资料

同角三角函数的基本关系式

倒数关系: 商的关系: 平方关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”)

诱导公式(口诀:奇变偶不变,符号看象限。)

sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与差的三角函数公式 万能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα ·tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα ·tanβ

2tan(α/2)

sinα=——————

1+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

半角的正弦、余弦和正切公式 三角函数的降幂公式

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

tan3α=——————

1-3tan2α

三角函数的和差化积公式 三角函数的积化和差公式

α+β α-β

sinα+sinβ=2sin———·cos———

2 2

α+β α-β

sinα-sinβ=2cos———·sin———

2 2

α+β α-β

cosα+cosβ=2cos———·cos———

2 2

α+β α-β

cosα-cosβ=-2sin———·sin———

2 2 1

sinα ·cosβ=-[sin(α+β)+sin(α-β)]

2

1

cosα ·sinβ=-[sin(α+β)-sin(α-β)]

2

1

cosα ·cosβ=-[cos(α+β)+cos(α-β)]

2

1

sinα ·sinβ=— -[cos(α+β)-cos(α-β)]

2

化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式

集合、函数

集合 简单逻辑

任一x∈A x∈B,记作A B

A B,B A A=B

A B={x|x∈A,且x∈B}

A B={x|x∈A,或x∈B}

card(A B)=card(A)+card(B)-card(A B)

(1)命题

原命题 若p则q

逆命题 若q则p

否命题 若 p则 q

逆否命题 若 q,则 p

(2)四种命题的关系

(3)A B,A是B成立的充分条件

B A,A是B成立的必要条件

A B,A是B成立的充要条件

函数的性质 指数和对数

(1)定义域、值域、对应法则

(2)单调性

对于任意x1,x2∈D

若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数

若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数

(3)奇偶性

对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数

若f(-x)=-f(x),称f(x)是奇函数

(4)周期性

对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂

正分数指数幂的意义是

负分数指数幂的意义是

(2)对数的性质和运算法则

loga(MN)=logaM+logaN

logaMn=nlogaM(n∈R)

指数函数 对数函数

(1)y=ax(a>0,a≠1)叫指数函数

(2)x∈R,y>0

图象经过(0,1)

a>1时,x>0,y>1;x<0,0<y<1

0<a<1时,x>0,0<y<1;x<0,y>1

a> 1时,y=ax是增函数

0<a<1时,y=ax是减函数 (1)y=logax(a>0,a≠1)叫对数函数

(2)x>0,y∈R

图象经过(1,0)

a>1时,x>1,y>0;0<x<1,y<0

0<a<1时,x>1,y<0;0<x<1,y>0

a>1时,y=logax是增函数

0<a<1时,y=logax是减函数

指数方程和对数方程

基本型

logaf(x)=b f(x)=ab(a>0,a≠1)

同底型

logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)

换元型 f(ax)=0或f (logax)=0

点击显示
上一篇:2011年四五六年级ICS系统公开课总结(例题+详解)
下一篇:苏教版牛津小学英语单词总表
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •